Economic Dynamics of Tree Planting for Carbon Uptake on Marginal Agricultural Lands

G. Cornelius van Kooten
Economic Dynamics of Tree Planting for Carbon Uptake on Marginal Agricultural Lands

G. Cornelis van Kooten¹
Forest Economics and Policy Analysis Research Unit
University of British Columbia
4th Floor, Forest Sciences Centre
2424 Main Mall
VANCOUVER, BC V6T 1Z4
Draft: June 2, 1999

Abstract
Since the 1997 Kyoto Protocol, afforestation of agricultural lands has taken on an important role in the CO₂-emissions reduction policy arsenal of some countries. While identification of suitable (marginal) agricultural lands has often been left to foresters, their criteria fail to take into account economic nuances. In this study, an optimal control model is used to determine the optimal level of afforestation in the western Canada. The results indicate that, while at most half of the identifiable marginal agricultural land could optimally be planted to fast-growing trees for carbon uptake, the optimal path matters in determining whether Canada can rely on afforestation to meet its obligations under Kyoto.

Key words: Afforestation and climate change; optimal control model of land use; economics of carbon sequestration

Background
Concern about global climate change led to the United Nations’ Framework Convention on Climate Change (FCCC) signed in Rio de Janeiro in June 1992. The Convention sought to stabilise atmospheric concentrations of carbon dioxide (CO₂) by having developed countries reduce their CO₂ emissions to the 1990 level by 2000 (article 4 of the FCCC). The Intergovernmental Panel on Climate Change (Houghton et al. 1996) created a sense of urgency that nations were not taking climate change seriously, especially since few nations would meet the Rio target. Thus, at a Conference of the Parties to the FCCC in December 1997 at Kyoto, Japan, developed countries further agreed to curtail their CO₂ emissions relative to the 1990 level. The US committed to reduce emissions to 0.93 of its 1990 level by the year 2012. The EU committed to 0.92, Canada and Japan to 0.94, Russia to 1.00, Australia to 1.08, and Iceland to 1.10 of their respective 1990 emissions levels, while other developed countries fall within this range of commitments. The Protocol does not require developing countries to control CO₂ emissions, even though their emissions will soon account for more than one-half of global emissions. Nor does the Protocol call for sanctions against countries failing to meet their targets—it is

¹The author would like to thank Brad Stennes for research support and the Sustainable Forestry Management Network located at the University of Alberta in Edmonton and Canada’s Social Sciences and Humanities Research Council for financial support.
Forest policy is expected to play an important role in helping some countries meet their emission targets. Already in 1989, the Noordwijk Declaration proposed increasing global forest cover as a means of slowing climate change. The Kyoto Protocol allows countries to claim as a credit any carbon (C) sequestered as a result of afforestation (planting trees on agricultural land) and reforestation (planting trees on denuded forestland) since 1990, while C lost as a result of deforestation is a debit (article 3.3). The forest component of the Protocol has several interesting aspects, although each of these is under review as countries seek clarification on the Protocol’s interpretation of terrestrial C sinks, especially forest sinks.

Deforestation is defined as a change in land use, so when a site is harvested but subsequently regenerated there is, according to some interpretations, no change in use so only the C credits associated with reforestation are to be counted, not the costs of C release. For example, if a mature forest stand is harvested sometime after 1990 and subsequently replanted, only growth of the newly established stand is counted as a credit; the debit from harvest is not counted. Given that the actual commitment period is 2008–2012, only verifiable growth during this period is counted as a credit, while only deforestation during 2008–12 is counted as a debit. Finally, only the commercial (and measurable) component of the tree is counted, so changes in soil carbon, for example, might be ignored, although the Protocol leaves open the opportunity to include additional activities (article 3.4).

Forests store carbon by photosynthesis. For every tonne (t) of carbon sequestered in forest biomass, 3.667 t of CO\textsubscript{2} is removed from the atmosphere. In general, plantation forests are a cost–effective means of sequestering C (Sedjo et al. 1995). Hence, countries that have a large forest sector are interested in C credits related to reforestation, and those with large tracts of agricultural land are interested in afforestation as a means for achieving some of their agreed upon CO\textsubscript{2}–emissions reduction.

Most countries are unlikely to adopt large–scale afforestation programs before the millennium, and even reforestation of sites harvested since 1990 is unlikely to make much of an impact during the commitment period. For forests in Scandinavia, Russia, Canada and the US, the major producing countries, the increase in biomass over the first two decades after planting of indigenous commercial species is generally imperceptible (Figure 1). In many instances, growth tables do not even begin until the third or fourth decade (see Thompson et al. 1992). Thus, any measure of C uptake by forests taken in the Protocol’s accounting period 2008–2012 will be small, or biased upwards if mean annual increment (MAI) over the entire rotation is used as a proxy for actual growth. It would appear, therefore, that forest policies are important in the intermediate term, and not the short term of the Kyoto Protocol. An exception occurs if high–yielding varieties of hardwood species are used in place of more natural, commercially valuable species, but planting such species could result in adverse environmental consequences associated with mono–cultures and may still not be in time to make much difference for the Protocol.

The purpose of this study is to examine the potential for planting trees on marginal agricultural land in Canada as one method for achieving CO\textsubscript{2}–emissions reduction. In 1990, Canadian emissions of CO\textsubscript{2} amounted to 596 million tonnes (Mt) of CO\textsubscript{2}–equivalent greenhouse gas emissions, or 162.5 Mt of C; in 1996 (the latest year for
which data are available), emissions amounted to 669 Mt of CO₂, or 182.4 Mt of C (Jacques 1998). Business as usual scenarios project annual emissions to remain stable to 2000, and then rise to 203.2 Mt C in 2010 and 225–230 Mt C in 2020 (see McIlveen 1998). To meet the Kyoto target, Canadian emissions must be 152.7 Mt C (560 Mt CO₂), some 25% (or 50.5 Mt C) below the level projected for the commitment period. Canada expects a large part of its international commitment to reduce CO₂ emissions to come from forestry, with perhaps 25–40 percent of its Kyoto commitment coming via tree planting (Canadian Forest Service 1998; Nagle 1990).

The specific purpose here is to investigate the claims of foresters that afforestation of marginal lands in (mainly western) Canada can make a significant contribution to Canada’s international commitments (e.g., Nagle 1990; Guy and Benowicz 1998). To do so, we employ a dynamic optimisation model that determines optimal levels of land conversion and, thus, the potential contribution that afforestation of marginal agricultural land can make to Canada’s Kyoto commitment. The study area encompasses the Peace River region of British Columbia (BC) and all of Alberta.

Agricultural Values and Tree Planting Costs

We investigate the potential of afforestation in Northeast BC and Alberta as a means for removing CO₂ from the atmosphere. Current agricultural land uses in the BC Peace River region and the eight Agricultural Reporting Areas (ARA) in Alberta are provided in Table 1. Improved land includes non–forage crops, forage crops, fallow, pasture and other land, while unimproved land contains mainly pasture.

The agricultural land types considered suitable for afforestation are primarily those associated with forage production and pasture, although suitability depends on the value of lands in their current agricultural activity. Current use is assumed to be the best use and to continue indefinitely. The land considered suitable for afforestation consists of forage (hay and alfalfa) and pasture (both improved and unimproved). We ignore lands in non–forage crops and fallow because the opportunity cost of these lands in forestry is deemed too high (see Table 2), while there is insufficient information about land in the “other” categories to enable a decision about their potential in tree plantations. While unimproved pasture is considered suitable for planting to trees, in some areas it already has some tree cover. For example, in the BC Peace region unimproved pasture (primarily crown range) consists mainly of pea vine and vetch that grow under mature aspen stands, and is already forested. This may also be true for the two most northern Alberta regions (ARAs 6 & 7). For these regions and for unimproved pasture, we assume additional planting of trees for C uptake is possible (as opposed to in the BC Peace), thereby eliminating the possibility of using the land as pasture, but that less growth occurs while planting costs are not reduced. This is not the case for unimproved pasture in ARAs 3, 4a, 4b & 5, where pasture is assumed to have little or no forest cover.

Finally, ARAs 1 & 2 are characterised by irrigated forage production and such lands are considered too dry for planting trees. Therefore, they are excluded from further analysis, although it may turn out that growing trees using irrigation may be an economically viable C uptake option. In total, it is estimated that some 7.033 million ha of agricultural land in the study region could be planted to hybrid poplar for the purpose
of sequestering carbon.

For each agricultural activity and region it is necessary to have data on the net returns associated with the current agricultural activity (the opportunity cost of afforestation), the direct costs of afforestation, and the net change in C fluxes and sinks associated with the change from agriculture to forestry. Data for hay production in British Columbia are from the *Planning for Profit Enterprise Budgets* (BC Ministry of Agriculture and Food, hereafter BCMAFF, 1995). To estimate the differences in returns across regions of Alberta, representative yields and prices were used for each of the ARAs (Alberta Agriculture 1998).

Pasture is treated somewhat differently. A good market exists in both British Columbia and Alberta for private pasture rental. Rents are based on a standardised animal unit month (AUM), which is the forage consumed per month by a 450–kg cow. Using data for each ARA on stocking rates in AUMs per ha (Wroe et al. 1988) and the private market value of an AUM of pasture use (Bauer 1997), the opportunity cost of lost pasture use is estimated.² The costs per hectare of lost forage and pasture production for all regions are provided in Table 2.

The additional cost that must be accounted for is the direct tree planting cost. Direct afforestation costs depend on the species chosen for planting. For all regions, fast growing hybrid poplar is the only species considered. BCMAFF (1996) estimates planting costs for hybrid poplar to be $1270 ha⁻¹, but others have estimated costs to be as high as $4000 per ha.³

Afforestation and Carbon Uptake

Carbon is stored in trees (stem, branches, leaves and root), understory, forest litter and forest soils. We calculate storage of C in total tree biomass (bole, branches, leaves and roots) plus litter and soil, although the latter are not currently included in the Kyoto provisions. Calculation of the stream of C uptake over a specified time horizon requires estimates of tree growth (see Nagle 1990). For this, we employ the Chapman–Richards function:

\[
v(t) = A(1-e^{-kt})^m,
\]

where \(A\) is maximum stem wood volume and \(k\) and \(m\) are parameters (Guy and Benowicz 1998). Volume is measured in cubic metres (m³).

²The bulk of pasture/range use comes from public lands, which have long–term lease agreements. The price associated with these leases is considerably less than the value of forage consumed (Bauer 1997), and thus not reflective of the true social value of forage.

³An establishment cost of $514 per acre is reported. However, subsequent work by Robinson Consulting and Associates places establishment costs of conventional species in BC at $1,500 per ha and hybrid poplar at $4,000 per ha given a 12 year rotation (Gary Robinson, pers comm, February, 1999). Estimates for establishment of hybrid poplar in northern Minnesota are in the range US$285–$338 (C$425–$504) per acre (Agricultural Utilization Research Institute 1997).
Because of its rapid growth rates, hybrid poplar is the only viable choice for afforestation projects whose purpose is to sequester carbon. This is clear from Figure 1 where 40–year average growth for indigenous softwood and hardwood boreal species and hybrid poplar are provided. Growth is given by equation (1) using parameter values from Guy and Benowicz (1998). A problem with hybrid poplar is that many clones exist and “… quoted growth rates of hybrid poplar vary tremendously across Canada and the northern USA making it difficult to estimate average values for each region” (Guy and Benowicz 1998, p.8). Available data on growth rates have been obtained under various management regimes, including fertilisation and irrigation. For varieties recommended for planting in western Canada, values of the parameters in equation (1) are as follows: for the boreal region, $A=329$ and $k=0.156$; for the prairie region, $A=270$ and $k=0.143$; and $m=3.0$ for both zones (see Guy and Benowicz 1998). Let r be the social discount rate. For parameter values $m=3.0$, $A\in[270, 330]$, $k\in[0.140, 0.160]$ and $r\in[0.02, 0.08]$, the financial rotation age for hybrid poplar is between 9 and 12 years.\footnote{The rotation age (t) is found by solving: $\frac{v'(t)}{v(t)} = \frac{mk e^{-kt}}{1 - e^{-kt}} = \frac{r}{1 - e^{-rt}}.$} If r is 2% or 4%, the rotation age is 11 years for parameters that yield the fastest rates of growth and 12 years for parameter values that yield somewhat lower rates of growth. Given that C uptake values will increase rotation ages slightly (see van Kooten, Binkley and Delcourt 1997; van Kooten, Thompson and Vertinsky 1993), a rotation age of 12 years is assumed for hybrid poplar.

Carbon flux needs to be calculated for six different accounts (see AACM International Pty Limited 1998). The most important account is likely the bole or merchantable component of the tree. Equation (1) provides the growth of volume for this component, which is translated into C by multiplying by 0.187 t C m$^{-3}$ (van Kooten, Thompson and Vertinsky 1993, pp.244–45). Carbon builds up in the bole until harvest time (12 years), when it is assumed to enter into another account (e.g., wood products) or the atmosphere (by burning). A new stand of trees replaces the old, with the process assumed to continue indefinitely.

Next is above–ground biomass other than the bole; this consists mainly of branches and leaves. It is usually determined as a proportion of merchantable volume, with Guy and Benowicz (1998) suggesting 0.57. When trees are cut, all of the non–merchantable biomass is left on the site as slash. At that time, it enters the litter account (treated below). When a new stand of trees is planted, there is re–growth of the non–bole biomass. In this sense, the non–merchantable biomass is treated much like the merchantable component.

Let $\eta (=1.57)$ be an expansion factor that translates bole biomass into total above–ground biomass and $\phi (=0.187)$ a factor that converts growth into carbon. The total discounted carbon per ha for the merchantable (M) plus related above–ground biomass (B) account is given as:

$$C_{M&B} = \frac{\eta \phi \int_0^t v(s)e^{-rs} ds - v(t)e^{-rt}}{1 - e^{-rt}},$$

where $t=12$ is the rotation age. The first term in parentheses counts the (discounted) carbon
that accumulates during the growing stage, while the second term measures the C released to another account at harvest time. Upon dividing by $1-e^{-rt}$, we obtain the sum of the infinite series of “returns” that accrue every t years, beginning in the current period (see van Kooten, Binkley and Delcourt 1997).

Third, carbon in the root pool is calculated from the following relationship between root biomass (R) and above–ground biomass ($G=M+B$):

\[
R(G) = 1.4319 \times 10^{0.6399},
\]

where R and G are both measured in m3 per ha (see Guy and Benowicz 1998). A one–time growth in roots is assumed, after which decay causes C to enter the soil pool at a rate exactly offset by the rate at which new growth adds to the root pool. Total discounted C per ha for the root account is:

\[
C_R = \phi \int_0^t R(G) e^{-rs} \, ds.
\]

Fourth, there is a change in soil C when agricultural land is converted to plantation forests. Data on soil C are difficult to obtain. Field trials in the northern Great Plains of the US indicate that sites with hybrid poplar have an average of 191 tonnes of C per ha in the top 1 metre of soil, row crops an average of 179 t of soil C, and grass that is regularly cut 157 t per ha (Hansen 1993, p.435). Guy and Benowicz (1998) note that forest soils in the study region store some 108 tonnes of C per ha compared to cropland that stores some 60 t. Soil C rebuilds only slowly when cultivation stops. Using Guy and Benowicz’ data and assuming that 2% of the difference is sequestered each year when land is converted from agriculture to forestry, 48 t ha$^{-1}$ is added to soil over a 50–year period. It is assumed that the annual build–up of soil C is constant and equal to 0.96 t ha$^{-1}$ for a period of 50 years, after which the soil is assumed to be in equilibrium (additions to soil C from roots and litter decay equals release to the atmosphere). Since it is difficult to determine soil C for different agricultural activities, and given that Hansen (1993) finds row crops store more C than grassland that is regularly cut, it is further assumed that there is no difference in the C sink potential of different agricultural lands and agricultural activities. Total discounted C per ha in the soil (S) account is thus:

\[
C_S = c_s \left(1 - \frac{1}{e^{50r}}\right),
\]

where c_s (0.96 t) is annual addition of C to the soil sink and the term in parentheses discounts an annual flow for a 50–year period to the present.

Fifth, the litter pool consists of dead or dying biomass on the forest floor that releases C to the atmosphere through fire and decay and to the soil pool. It is a relatively small pool of C that changes rapidly (AACM International Pty Limited 1998). It is assumed that the litter account grows by a constant amount each year for 50 years, after which it is in equilibrium. At that point it is assumed that the litter pool is one–half the non–bole biomass. In addition, there is a spike in the pool’s biomass at harvest time. It is assumed that the slash component of the litter releases a constant amount of C into the atmosphere over the next 12 years (linear decay) so that it is depleted by the time of next harvest. This carbon spike and subsequent decay is important because physical C is discounted—it matters when C is removed from the atmosphere. The total discounted carbon per ha accruing to the litter account (C_L) is given as:
(6) \[C_L = (\eta - 1)\phi \left[c_1 \left(1 - e^{-\frac{50r}{r}} \right) + \frac{\int_0^I v(s)e^{-rs}ds - v(t)e^{-rt}}{1 - e^{-rt}} \right], \]

where \(c_1 = \frac{v(t)}{2r} \) is the constant annual addition to the litter pool. The first term constitutes the current “value” of the 50-year litter pool, while the second term is the discounted sum of the infinite deposit and subsequent decay of litter beginning with the current period and continuing every \(t (=12) \) years.

Finally, it is important to consider what happens to the bole (or commercial component of the tree). Two alternatives are considered for harvested timber: burning wood in place on an energy-equivalent amount of coal (thus saving CO2 emissions from coal) or storing C in wood products. The latter alternative delivers the most C “removal” per dollar of costs, and is used here (see van Kooten et al. 1999). It is assumed, however, that 20% of the bole is waste and burned, with 3.78 m³ wood substituting for 1 tonne coal, saving 0.707 t of C emissions and returning $7.50 per m³ in revenue (van Kooten et al. 1999). The remaining 80% of the bole goes into paper products (3/4) and wood products (1/4), such as lumber, posts and OSB (Winjum, Brown and Schlamadinger 1998).

To obtain carbon fluxes for wood products, assume that proportion \(\rho \ (0 \leq \rho \leq 1) \) of the C gets stored in products that decay (release C) at a rate \(\delta \ (0 \leq \delta \leq 1) \) per year. Then, the total discounted C per ha stored in wood products at time of harvest plus the discounted emission savings resulting from the substitution of wood for coal in energy production at time of harvest is given as:

(7) \[C_W = \phi v(t) \left[\rho \left(\frac{r}{r + \delta} \right) + (1 - \rho) \right] \left(\frac{e^{-rt}}{1 - e^{-rt}} \right), \]

where \(C_W \) refers to the discounted C uptake resulting from use of commercial timber. Each time wood is harvested, a proportion \(\rho \) of the C in the bole is stored immediately in wood products, but every year thereafter a proportion \(\delta \) is released. The first term in the square brackets in (7) gives the infinite sum of the total discounted C stored in wood products at each harvest; the second term in brackets represents C saved by burning wood in place of coal. The final term in (7) is a factor that sums the “values” that accrue every t years over the infinite time horizon (see van Kooten, Binkley and Delcourt 1995).

Skog and Nicholson (1998) argue that paper products have a half–life of one to six years, while lumber in housing has a half–life of 80 to 100 years. Winjum, Brown and Schlamadinger (1998), on the other hand, point out that oxidation rates are 0.02 per year for industrial roundwood products and 0.005 for paper products that end up in landfills. We assume that two-thirds of the paper products end up in landfills, releasing C at a very low rate, while the remainder releases C at a rate of 0.5; for other wood products, we assume a rate of decay of 0.02. The blended rate of decay, with 75% of wood going to paper and 25% to lumber and other building products, is 0.131. Thus, \(\rho = 0.8 \) (since 20% is waste) and \(\delta = 0.131 \).

Discounted carbon uptake for selected values of the growth parameters are
provided in Table 3 for the various accounts and a discount rate of 4%. Total discounted C uptake varies from 85.4 t per ha to 111.4 t per ha, while annualised C uptake varies from 3.4 to 4.5 t per ha (Table 3). Annualised values are provided so that we can compare C fluxes in some accounts that continue every year into the future with those that attain equilibrium at some future date. Annual values are used to construct the functions needed to determine the optimal level of afforestation.

Economically Optimal Level of Afforestation

In this section, we employ a dynamic optimisation model to provide an indication of the optimal amount of agricultural land to plant to trees for the purpose of removing carbon from the atmosphere.

Dynamic Optimisation Model

The objective is to maximise the discounted flow of present and all future net benefits, including benefits of carbon uptake. The objective function can be written as follows:

\[
\text{max } W = \int_{0}^{\infty} \pi(t) e^{-rt} dt,
\]

where

\[
\pi = \int_{0}^{A} B'(s) \, ds + \int_{0}^{A_{0} - A} [sF(z) + p_{c}C(z)] \, dz - \tau(R) \, R(t).
\]

Here \(\pi(t)\) is economic benefits; \(A_{0}\) represents the initial stock of (marginal) agricultural land available for afforestation (7.03 million ha for the study area) and \(A(t)\) the land in agriculture at any time, so that \(A_{0} - A\) is land converted from agriculture to plantation forest for the purpose of sequestering C; \(R(t)\) is the agricultural area afforested at time \(t\); \(B'(A)\) are the marginal benefits of agricultural production, which decline as more of the available agricultural land is retained in agriculture rather than converted to forest, \(B''(A)<0\), indicating that the poorest agricultural land is afforested first; \(s\) is the stumpage value of timber; \(p_{c}\) is the shadow price of carbon; \(sF(z) + p_{c}C(z)\) are the marginal benefits of afforestation; and \(r\) is the social rate of discount. The term \(\int_{0}^{A_{0} - A} [sF(z) + p_{c}C(z)]dz\) describes the total benefits for the \((A_{0} - A)\) hectares of farmland that is afforested. Marginal benefits of tree planting equal the sum of the marginal commercial timber benefits, \(sF(z)\), and the shadow value of the marginal C uptake benefits, \(p_{c}C(z)\). Recognising that \(z = A_{0} - A\), \(F'(z)<0\) and \(C'(z)<0\). The function \(\tau(R)\) represents the cost of planting a hectare of farmland to trees, which increases as one attempts to plant more area in a given year. The required functions are discussed further below.

The dynamic (subject to) constraint is

\[
A(t) = -R(t),
\]

where the dot over a variable indicates a time derivative. The focus is on conversion of agricultural land into plantation forest, because cost of converting land from forest to agriculture is ignored (see van Kooten and Folmer 1997).
Maximisation takes place subject to the equation of motion (10). The current value Hamiltonian (suppressing time notation) is defined as:

\[H = π - λR, \]

where \(λ \) is the co-state variable. Assuming an interior solution, the necessary conditions for an optimum solution are:

\[\frac{∂H}{∂R} = 0 \Rightarrow λ = -τ'(R) R - τ(R) \]
(11)

\[\dot{λ} = rλ - \frac{∂H}{∂A} \Rightarrow \dot{λ} = rλ - [B'(A) - sF(A_0 - A) - p_c C(A_0 - A)]. \]
(12)

The interpretation of (11) is that the rate of conversion of agricultural land to forest should be chosen so that the discounted marginal net benefit from current conversion, \(λ \), equals the marginal benefit (marginal costs avoided) of delaying conversion. The discounted marginal benefits of current conversion take into account the opportunity cost of lost agricultural production, while \(τ \) could be constant. Equation (12) provides a standard intertemporal arbitrage condition (see Clark 1990).

The steady state occurs when the co-state multiplier and the area retained in agricultural production are constant (\(\dot{λ} = λ = 0 \)) so no further afforestation takes place \((R=0) \). The equation that describes the optimal amount of land to keep in agriculture in the steady state is:

\[\frac{sF(A_0 - A*) + p_c C(A_0 - A*)}{r} - τ(0) = \frac{B'(A*)}{r}. \]
(13)

Equation (13) says that, in equilibrium, the present value of the benefits of afforestation minus planting costs must equal the discounted stream of benefits of keeping land in agricultural production at the margin. Included in benefits are the shadow costs and benefits of C uptake and release. The difficulty in solving (13) lies with determining the four functions \(F(A_0 - A), C(A_0 - A), τ(R), \) and \(B'(A) \).

Parameter Values for Model

An exponential functional form is assumed for \(F(A_0 - A), C(A_0 - A) \) and \(B'(A) \), namely,

\[f(x) = α_i e^{β_i x}, \quad (i=F, C, B), \]
(14)

while a linear functional form is employed for the marginal planting cost function,

\[τ(R) = α_τ + β_τ R. \]
(15)

For function (14), parameter values can be determined by calculation if \(f(0) \) and one other point on the function are known; for \(τ(R) \), parameter values can be calculated if any two points on the function are known. As already noted, estimates of planting costs for hybrid poplar vary from $1270 to $4000 per ha. It is assumed that \(α_τ = π(0)=1200 \) and that costs rise at a rate of $0.005 per ha so that the 360,000th ha planted in a given year costs $4000 to plant. Since \(R \) is measured in millions, however, \(β_τ=5000. \)

Land with the lowest agricultural value is planted to trees first, followed by increasingly valuable land (Table 2). The parameters for \(B'(A) \) are found by assuming that marginal land in agriculture has an annual net return of $10 per ha when all land is in agriculture, and $350 per ha when it has all been afforested.

When calculating \(F(A_0 - A) \) and \(C(A_0 - A) \), it is also necessary to assume that agricultural land with the lowest values is afforested first. Timber growth varies by region and this is reflected in the parameter values of equation (1). For unimproved
pasture in the BC Peace region, no growth is assumed possible, while low values of the
growth parameters \((k=0.140, A=270)\) are used for unimproved pasture in northern Alberta
(ARAs 6 & 7) to account for extant tree growth. These agricultural areas also correspond
to the (nearly) lowest returns to agricultural activities (Table 2). For other regions,
parameter values are chosen according to land quality, as measured by agricultural
returns (Table 2), and location (boreal or prairie zone). Values for the growth parameters
for the regions in our study area are provided in Table 4. From these, it is possible to
calculate timber growth and associated (annualised) C uptake (using the relations in the
previous section). For the C uptake function, separate calculations are required for
different assumptions about the rate used to discount physical carbon.

Parameter values for each of the functions are found in Table 5. Sensitivity
analysis is used to determine the impacts of the various parameter values on optimal
levels of afforestation. Areas \(A\) and \(A_0\) are measured in millions of hectares.

Finally, it is necessary to multiply commercial timber by the annualised stumpage
value \((s)\), which depends on the discount rate. Van Kooten et al. (1999) employ harvest
plus hauling costs that average $22.50 per m\(^3\). Revenues amount to $7.50 per m\(^3\) for
waste wood that is burned and $30.00 per m\(^3\) for timber used in wood products. Waste
wood is burned despite costs exceeding revenues to enhance C uptake. Given that
burning accounts for 20% of timber and wood products for 80%, the average stumpage
value is $3 per m\(^3\). Earnings are realised every t years, so annualised returns are
\(\frac{3re^{-rt}}{1-e^{-rt}}\) per m\(^3\). The values of \(s\) are also given in Table 5.

Empirical Results

The steady–steady, optimal solution is found by solving (13). The results are provided in
Table 5. These indicate that, for a shadow price of C not exceeding $20 per tonne (a
reasonable assumption), no more than about 50% of available marginal agricultural land
should be planted to trees to meet Canada’s Kyoto target. At shadow prices for C of $50
per t or more, about three–quarters of marginal agricultural land can be afforested.

To determine the sensitivity of the results to the assumptions, the marginal
benefits of land in agricultural activities were increased, the returns to forestry were
reduced and the costs of tree planting were increased. When the marginal benefit
function for land in agricultural activities has a lower slope or larger intercept (so land in
agriculture is slightly more valuable at the margin), the optimal amount of agricultural
land to convert to forests declines by 0.5–1.5 million ha (for lower shadow prices of C).
At a shadow price of C of $20 per t, a decline in timber revenue of 1% results in a 0.27%
decline in the optimal area to be afforested. Finally, the results are most sensitive to the
value of \(\tau(0)\), the marginal value of tree planting costs when \(R=0\). If costs of planting
hybrid poplar are significantly higher than assumed here, it is possible that no more than
one–quarter of available marginal agricultural land should be planted to trees for C
uptake purposes. If planting costs are $3,000 per ha or more, regardless of the type of
agricultural land, no agricultural areas should be afforested.

We investigate the role of planting costs in greater detail by examining the
dynamic approach path. Taking the time derivative of (11) gives:

\[
\dot{\lambda} = -\dot{R} [\tau''(R) R + 2 \tau'(R)].
\]
Substituting (11) and (16) into (12) and solving for \dot{R} gives:

$$\dot{R} = \frac{r'[\tau'(R)R + \tau(R)] + B'(A) - sF(A_0 - A) - p_c C(A_0 - A)}{\tau''(R)R + 2\tau'(R)}.$$

Assuming a 4% discount rate for both monetary values and physical carbon, and with $p_c = \$20$ per t, equations (10) and (17) can be used to construct the phase plane diagram shown in Figure 2.

The optimal approach path could not be determined numerically for this highly nonlinear problem (see Conrad and Clark 1987). Nonetheless, we are able to shed some light on the problem using the phase–plane diagram. Along an optimal approach path, shown by the dotted line, annual plantings cannot exceed some 175,000 ha. The reason is that, while the initial direction of motion is in a north–westerly direction (as indicated by the arrows of motion), the direction must be parallel the horizontal axis when it crosses the $\dot{R} = 0$ curve (at that point the slope of the approach path must be zero). Even if 175,000 ha are planted annually, it will take some 20 years to achieve the optimal level of afforestation (3.5 million ha). More likely an average of less than 85,000 ha per year would be planted, in which case it would take more than 40 years to achieve the optimal level of afforestation. Any other approach path will result in higher, probably unacceptable, carbon uptake costs.

Discussion

Foresters are generally optimistic about Canada’s ability to meet its carbon uptake commitments by planting hybrid poplar on marginal agricultural land. This is partially confirmed by the results of this study, which show that, for a shadow price of C of $20 per t, it may be optimal to afforest as much as 50% of identifiable marginal agricultural land. In that case, some 12.3 Mt of carbon will be sequestered per year in the study area, or nearly one–quarter of Canada’s Kyoto commitment. If this result can be extended to marginal agricultural land in the rest of Canada, then some 70% of Canada’s Kyoto commitment could be attained through forestry policies. Of course, this is a most optimistic scenario. Under different assumptions, the optimal, steady state level of afforestation would be lower. Even if it were half as much, afforestation remains an important, if not the most important, policy instrument available to Canada.

A different picture emerges if the path dynamics leading to the steady state are taken into account. In order to keep costs of C uptake at a reasonable (acceptable) level, one cannot afforest large areas of agricultural land all at once. Indeed, based only on rising planting costs, the optimal rate at which marginal agricultural land should be afforested is rather low—some 90,000 ha per year or less. If a planting program were implemented in 2000, then less than one million ha of marginal agricultural land will be afforested by Kyoto’s commitment period, if the optimal dynamic path is followed. In that case, afforestation in the study region would contribute only some 7% of the needed emissions reduction. Even so, if applicable to the rest of Canada, afforestation could account for slightly more than 20% of Canada’s international commitments.

Several factors have been ignored in this study. First, there may be environmental costs to planting hybrid poplar on a large scale. These might include a reduction of wildlife habitat, particularly on non–cultivated agricultural lands, and loss of scenic
amenities. These costs are not taken into account, but would increase costs of carbon uptake. Second is the problem of establishing proper incentives for landowners to grow hybrid poplar. Outright purchase of agricultural land will be infeasible because of budget limitations, while financial incentives (planting plus annual subsidies) may be difficult to implement as this will require drawing up contracts between landowners and the government agency responsible for the program. Contracting is not costless, and strategic behaviour by landowners could result in much higher costs than anticipated, as well as delays. However, the problem of contracting in such cases is rarely discussed and much less investigated. Third, costs of monitoring growth and C uptake will be costly, and there do not now exist institutions in BC and Alberta (where public ownership of forestland exceeds 90%) that monitor growth and yield. Finally, there is a great deal of uncertainty associated with planting of hybrid poplar on a large scale because this has not been done previously. In addition, there is uncertainty about the (current and future) prices of timber products (including what wood fetches as fuel) and agricultural output. Resolving each of these issues constitutes several research tasks.

References

Forest Interface. Chapter 9 in *Climate–change Mitigation and European Land–
Wallingford, UK: CAB International.

van Kooten, G.C., C.S. Binkley and G. Delcourt, 1995. Effect of Carbon Taxes and
Subsidies on Optimal Forest Rotation Age and Supply of Carbon Services,

in British Columbia When Benefits of CO₂ Reduction are Taken into Account.
Chapter 12 in *Forestry and the Environment: Economic Perspectives* (pp.227–47)
International.

van Kooten, G.C., B. Stennes, E. Krcmar–Nozic and R. van Gorkom, 1999. Economics of
Fossil Fuel Substitution and Wood Product Sinks when Trees are Planted to
Sequester Carbon on Agricultural Lands in Western Canada. Unpublished FEPA
Working Paper. Vancouver: FEPA Research Unit, UBC.

Impacts, Adaptation and Mitigation of Climate Change: Scientific–Technical

Products: Sources and Sinks of Atmospheric Carbon Dioxide, *Forest Science*
44(2): 272-284.

Range Conditions and Stocking Rates for Alberta Grasslands*, Alberta Forestry,
Lands and Wildlife, Public Lands, Edmonton Alberta.
Table 1: Farmland Area Classified by Land Use (ha)

<table>
<thead>
<tr>
<th>Region</th>
<th>Improved land</th>
<th>Unimproved land</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non–forage crops</td>
<td>Forage</td>
</tr>
<tr>
<td>BC Peace Alberta ARA</td>
<td>137,585</td>
<td>119,584</td>
</tr>
<tr>
<td>1 (Southeast)</td>
<td>758,862</td>
<td>111,072</td>
</tr>
<tr>
<td>2 (S central)</td>
<td>1,544,105</td>
<td>135,252</td>
</tr>
<tr>
<td>3 (Southwest)</td>
<td>857,419</td>
<td>216,449</td>
</tr>
<tr>
<td>4a (E central)</td>
<td>821,625</td>
<td>115,872</td>
</tr>
<tr>
<td>4b (E central)</td>
<td>1,055,335</td>
<td>128,412</td>
</tr>
<tr>
<td>5 (Central)</td>
<td>800,479</td>
<td>435,667</td>
</tr>
<tr>
<td>6 (Northeast)</td>
<td>591,720</td>
<td>446,670</td>
</tr>
<tr>
<td>7 (Northwest)</td>
<td>1,193,462</td>
<td>334,144</td>
</tr>
</tbody>
</table>

Source: Statistics Canada (1997a, 1997b)

Table 2: Net Annual Returns to Current Agricultural Activities ($ per ha)

<table>
<thead>
<tr>
<th>REGION</th>
<th>Forage(^a)</th>
<th>Improved Pasture</th>
<th>Unimproved Pasture</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC Peace Alberta ARA</td>
<td>184.98</td>
<td>34.45</td>
<td>n.a.</td>
</tr>
<tr>
<td>1 (Southeast)</td>
<td>185.75(^b)</td>
<td>17.51</td>
<td>8.75</td>
</tr>
<tr>
<td>2 (South central)</td>
<td>304.04(^b)</td>
<td>23.64</td>
<td>11.82</td>
</tr>
<tr>
<td>3 (Southwest)</td>
<td>310.20</td>
<td>35.82</td>
<td>17.33</td>
</tr>
<tr>
<td>4a (East Central)</td>
<td>101.47</td>
<td>24.84</td>
<td>12.42</td>
</tr>
<tr>
<td>4b (East Central)</td>
<td>116.80</td>
<td>28.35</td>
<td>14.02</td>
</tr>
<tr>
<td>5 (Mid Central)</td>
<td>260.56</td>
<td>46.93</td>
<td>20.26</td>
</tr>
<tr>
<td>6 (Northeast)</td>
<td>168.63</td>
<td>58.01</td>
<td>21.04</td>
</tr>
<tr>
<td>7 (Northwest)</td>
<td>178.75</td>
<td>34.45</td>
<td>15.15</td>
</tr>
</tbody>
</table>

\(^a\) Forage is based on the net returns for hay and alfalfa, weighted by the production of each within the region.

\(^b\) ARAs 1 & 2 have irrigated forage production, are too dry for planting trees and are excluded from further analysis.

Table 3: Discounted Carbon per ha in Various Accounts, 4% Discount Rate\(^a\)

<table>
<thead>
<tr>
<th>Parameters for growth function, (m=3.0)</th>
<th>(A=270)</th>
<th>(A=270)</th>
<th>(A=330)</th>
<th>(A=330)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k=0.140)</td>
<td>(k=0.160)</td>
<td>(k=0.140)</td>
<td>(k=0.160)</td>
<td></td>
</tr>
<tr>
<td>Above ground biomass</td>
<td>13.32</td>
<td>16.37</td>
<td>16.28</td>
<td>20.01</td>
</tr>
<tr>
<td>Roots</td>
<td>15.25</td>
<td>16.93</td>
<td>17.34</td>
<td>19.25</td>
</tr>
<tr>
<td>Soil</td>
<td>20.62</td>
<td>20.62</td>
<td>20.62</td>
<td>20.62</td>
</tr>
<tr>
<td>Litter</td>
<td>18.71</td>
<td>21.96</td>
<td>22.87</td>
<td>26.83</td>
</tr>
<tr>
<td>Wood products and coal saving</td>
<td>17.52</td>
<td>20.21</td>
<td>21.41</td>
<td>24.70</td>
</tr>
<tr>
<td>TOTAL</td>
<td>85.42</td>
<td>96.10</td>
<td>98.51</td>
<td>111.42</td>
</tr>
<tr>
<td>Annualised Carbon (t C ha(^{-1}) yr(^{-1}))</td>
<td>3.417</td>
<td>3.844</td>
<td>3.941</td>
<td>4.457</td>
</tr>
</tbody>
</table>

\(^a\) Calculated from equations (1) through (7) for various growth parameters.
Table 4: Parameter Values for Hybrid Poplar Growth Functions

<table>
<thead>
<tr>
<th>REGION</th>
<th>Forage Improved Pasture</th>
<th>Unimproved Pasture</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC Peace</td>
<td>A=330, k=0.16</td>
<td>A=330, k=0.14</td>
</tr>
<tr>
<td>Alberta, ARA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 (Southwest)</td>
<td>A=300, k=0.16</td>
<td>A=300, k=0.16</td>
</tr>
<tr>
<td>4a (East Central)</td>
<td>A=300, k=0.16</td>
<td>A=300, k=0.16</td>
</tr>
<tr>
<td>4b (East Central)</td>
<td>A=300, k=0.16</td>
<td>A=300, k=0.16</td>
</tr>
<tr>
<td>5 (Mid Central)</td>
<td>A=300, k=0.16</td>
<td>A=300, k=0.16</td>
</tr>
<tr>
<td>6 (Northeast)</td>
<td>A=330, k=0.15</td>
<td>A=300, k=0.15</td>
</tr>
<tr>
<td>7 (Northwest)</td>
<td>A=330, k=0.16</td>
<td>A=330, k=0.14</td>
</tr>
</tbody>
</table>

Table 5: Parameter Values for Functions (11.14 and 11.15)

<table>
<thead>
<tr>
<th>Function/Parameter</th>
<th>α_i</th>
<th>β_i</th>
<th>Values for calculating parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B'(A)$</td>
<td>350</td>
<td>-0.5055</td>
<td>($350 \text{ ha}^{-1}, 10 \text{ ha}^{-1}$)</td>
</tr>
<tr>
<td>$\tau(R)$</td>
<td>1200</td>
<td>5000</td>
<td>see text</td>
</tr>
<tr>
<td>$C(A_0-A)$ at 2%</td>
<td>3.0</td>
<td>-0.0378</td>
<td>(2.3 t ha$^{-1}$, 3.0 t ha$^{-1}$)</td>
</tr>
<tr>
<td>$C(A_0-A)$ at 4%</td>
<td>4.4</td>
<td>-0.0498</td>
<td>(3.1 t ha$^{-1}$, 4.4 t ha$^{-1}$)</td>
</tr>
<tr>
<td>$C(A_0-A)$ at 6%</td>
<td>5.3</td>
<td>-0.0400</td>
<td>(4.0 t ha$^{-1}$, 5.3 t ha$^{-1}$)</td>
</tr>
<tr>
<td>$F(A_0-A)$</td>
<td>205</td>
<td>-0.0492</td>
<td>(205 m3, 145 m3)</td>
</tr>
</tbody>
</table>

Stumpage (per m^3)a

s at 2%	0.2212
s at 4%	0.1948
s at 6%	0.1707

a Annualised values

b i=F, C, B, τ

c Calculated using data in Tables 2 and 4.

Table 6: Optimal Proportion of Total Available Marginal Agricultural Land in BC and Alberta to Plant to Trees for Carbon Uptake, Sensitivity Analysis

<table>
<thead>
<tr>
<th>Price of C (per t)</th>
<th>Discount Rate (Base Parameter Values)</th>
<th>For $\tau(R)$</th>
<th>For $B'(A)$</th>
<th>For $B'(A)$</th>
<th>Lower Stumpage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2%</td>
<td>4%</td>
<td>6%</td>
<td>$\alpha_c'=2000$</td>
<td>$\beta_c'=0.40$</td>
</tr>
<tr>
<td>10</td>
<td>0.41</td>
<td>0.29</td>
<td>0.09</td>
<td>0</td>
<td>0.15</td>
</tr>
<tr>
<td>20</td>
<td>0.53</td>
<td>0.50</td>
<td>0.46</td>
<td>0.34</td>
<td>0.39</td>
</tr>
<tr>
<td>50</td>
<td>0.73</td>
<td>0.76</td>
<td>0.79</td>
<td>0.71</td>
<td>0.71</td>
</tr>
<tr>
<td>100</td>
<td>0.90</td>
<td>0.95</td>
<td>1.00</td>
<td>0.92</td>
<td>0.94</td>
</tr>
</tbody>
</table>
Figure 1: 40-Year Growth for Various Tree Species, Boreal Region, Western Canada

Figure 2: Phase–Plane Diagram of the Optimal Afforestation Path