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ABSTRACT 
 

This project, which is one of several interrelated projects undertaken by the Boreal 
Ecology and Synthesis Team (BEEST), completed four research components in the past three 
years.  The first component was the development of FEEnix, a spatial simulation tool that can be 
used to evaluate the ecological and economic consequences of alternative forest management 
practices at large spatial and temporal scales.  FEEnix comprises four main submodels including a 
harvest scheduler and road builder, a wildfire ignition and spread submodel, a mixedwood stand 
dynamics submodel, and a set of habitat models predicting the distribution and abundance of 
forest birds.  In the second research component we explored the feasibility of modelling spatially 
explicit landscape pattern indices from nonspatial stand attribute tables.  We sought indices that 
have been shown, in the literature and with our own habitat modelling initiatives, to be important 
correlates of bird abundance and community structure.  Using only three landscape variables 
obtained directly from stand attribute tables (total habitat area, and the mean and standard 
deviation of habitat patch size), our statistical models explained more than 73% of the joint 
variation in five landscape pattern indices (representing patch shape, forest interior habitat, and 
patch isolation).  In the third research component we used bird survey and forest inventory data, 
from the boreal mixedwood forest in Alberta, to develop statistical models relating bird 
abundance to habitat characteristics measured at two spatial scales.  Bird abundances were 
estimated from 1-6 years of point count surveys at over 400 stations.  At the local scale (3-ha 
buffers centered on point-count stations) we measured patch attributes such as canopy height and 
crown closure.  At the neighbourhood scale (74-ha annular buffers), we characterised the forest 
composition and configuration.  Poisson regression models developed for five species using both 
local and neighbourhood habitat variables explained up to 73% of the variation in abundance.  
The importance of empirical model validation using independent data is discussed, especially 
when habitat models will be used to evaluate management scenarios over large spatial and 
temporal scales.  In the fourth research component we began linking FEEnix and our newly 
developed habitat models to explore interactions between alternative harvesting scenarios, fire 
regimes and stand dynamics on bird species abundances and community structure.  In the final 
section of the report we provide a brief summary of three Master’s theses partially funded by the 
Sustainable Forest Management Network. 
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INTRODUCTION 

 
A broad goal of the SFM Network is to synthesize information from various research 

sources into appropriate practices for sustainable management of the boreal forest.  At present, 
there is a general view that harvesting should emulate to some degree the natural disturbance 
regime, the spatial aspect of which remains incompletely understood.  There also is a need for 
accounting and simulation tools that can evaluate just how well this objective can be achieved at 
an operational level, and whether it makes sense to do so.  Further, it is necessary to 
quantitatively evaluate the ability of management alternatives to satisfy multiple and evolving 
ecological and socio-economic objectives.  To this end, the Boreal Ecology and Economic 
Synthesis Team (BEEST) undertook integrative/simulation studies of stand dynamics, pursued 
collaborative work on fire modelling, developed empirical habitat models, and implemented 
approaches to using such models in operational-scale planning tools.  Thus, the main objective of 
the BEEST, which includes this project, was to develop an integrated suite of models of natural 
forest dynamics and forest management, that facilitate the evaluation of management scenarios.  
Our focus was on the assembly and analysis of existing data sets, and the creation of analytic and 
modelling frameworks that permit the inclusion of new data as it becomes available.  The 
scientific research areas included stand dynamics, spatial patterns in fire ignition and spread, the 
effect of fire suppression, and the statistical and simulation modelling of these and other 
processes, including wildlife habitat. 
 

Our specific objectives for this project were (1) develop and parameterise landscape 
simulation and planning tools, (2) explore relations between spatial and aspatial forest 
characteristics, (3) develop a set of empirical models of forest bird distributions, and (4) explore 
the interactions between forest management, fire and stand dynamics, and the consequences of 
changes in landscape structure on forest bird communities.  Objective 1 was tightly coupled with 
the companion project of Beck, Adamowicz and Schmiegelow, whilst objective 3 is similarily 
integrated with Schmiegelow and Beck. Objective 4 is an ongoing initiative that involves many 
BEEST members.  We also briefly report on the successful completion of  three Master’s theses. 
 

 
STUDY AREAS 

 
We used two study areas: one to explore explore relations between spatial and aspatial 

forest characteristics (objective 2) and the other to develop habitat models (objective 3).  Our 
coarse-scale study area comprises about 7,500,000 ha of boreal mixedwood forest (Rowe 1972), 
on the southern edge of a large forest estate in northeast Alberta, Canada (approx. 56° N, 113° 
W; Figure 1).  Our fine-scale study area encompassed ≈140 km2 of boreal mixedwood forest near 
Calling Lake, in north-central Alberta, Canada (55° N, 113° W; indicated by the star symbol in 
Figure 1).  The mixedwood region is transitional between colder, conifer-dominated forests to the 
north and warmer, drier aspen parklands to the south (now largely farmland).  Mean summer 
(early June through mid-August) precipitation in the region is ≈320 mm, accounting for >70% of 
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the total yearly precipitation; July is generally the wettest month.  The mean summer temperature 
is 12.0°C, and the mean frost-free period is 85 days (Strong and Leggat 1981).  The most 
abundant tree species are trembling aspen (Populus tremuloides Michx.), balsam poplar (P. 
balsamifera L.), black spruce (Picea mariana (Mill) B. S. P.), jack pine (Pinus banskiana Lamb), 
and white spruce (Picea glauca (Moench) Voss).  The dominant understory shrubs are alder 
species (Alnus tenufolia, A. crispa) with lesser amounts of willow (Salix spp.).  Various fruiting 
shrubs (Rubus, Rosa spp.), sarsaparilla (Aralia nudicaulis), and other herbaceous plants dominate 
the lower strata.  Wetland areas are abundant in the mixedwood, and cover about 50% of the 
shaded region in Figure 1, but only 10% of our actual study landscapes.  The region has generally 
low relief, with limited variation in landforms and topography.  Historically, stand-replacing fires 
and insect outbreaks have been the dominant disturbance agents. 

 
Figure 1.  Study area location in northern Alberta with 84 selected townships highlighted in dark grey.  The 
light grey area  is  the forest estate from which townships were selected.  Irregular polygons represent forest 



 

 3

management unit boundaries in Alberta.  The location of the Calling Lake study area is indicated by the 
star. 

OBJECTIVE 1:  LANDSCAPE SIMULATION MODELLING (FEENIX) 
 

We developed an integrated landscape simulation model for applications to forest 
management and habitat conservation problems in the boreal mixedwood forest.  The regionally-
specific model components are fire, mixedwood stand dynamics, hierarchical harvest scheduling, 
and habitat modelling.  These components are continually evolving along with the underlying 
research programmes and it is expected that design decisions, model components and process 
parameters will undergo further changes in the future.  The current version of the model is known 
as FEEnix – Forest Ecosystem Emulator. 
 

FEEnix was originally developed from an existing simulation model that was developed to 
provide an objective and quantitative tool for comparing forest harvesting and conservation 
policies for the spotted owl and other rare species (Demarchi 1998).  The previous version of the 
model consisted of an individual-based population dynamics model which is linked to a detailed 
spatial simulation of forest harvesting, to represent as accurately as possible the forest landscape 
changes that a particular species of wildlife will face.  The model has been used to evaluate 
alternate forest management policies aimed at protecting and conserving the northern spotted owl 
on timber supply areas in the vicinity of Vancouver, B.C.  The most recent version of the model 
software was written in Visual Basic 6.0 and runs under Microsoft Windows (Figure 2).  A 
summary of the major refinements and new additions to the current version of FEEnix are 
described below (see also Cummings et al. 1998 for more details). 
 
Characteristics of FEEnix 
 
Spatial resolution and extent.  Earlier versions of the model ran at low spatial resolutions.  In 
some applications, harvest scheduling was limited to clearcut logging at a 2500 ha resolution.  
This was clearly undesirable, and as technology developed, the potential for higher resolution 
modelling was realised.  In the spotted-owl modelling application, a spatial resolution of 25 ha 
and a spatial extent of ≈2.3 × 106 ha was used.  This resolution approaches the extent and grain of 
actual forest practices.  The current version of the model, FEEnix, has been developed at a 9 ha 
resolution, and will be able to simulate areas as large as several million ha. 
 
Input data layers.  FEEnix reads and operates on raster-based ASCII map files, such as those that 
can be generated from ArcView and GRASS geographic information systems (GIS).  The study 
region and desired spatial resolution must be defined beforehand, as part of the data assembly 
phase.  Once entered, data layers can be manipulated thru the interface, either before or during a 
simulation run.  This feature is especially useful in modelling workshops.  In forestry applications, 
data layers typically include location, forest type and age, site productivity indices, road access 
and potential hawl routes, forest reserve status, a classified habitat map, and an optional elevation 
map.  Most of the layers can easily be obtained from existing digital forest inventory data such as 
the Alberta Vegetation Inventory (AVI). 
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Harvest scheduling and dynamic road building.  FEEnix generates timber harvest schedules 
based on a number of economic and operational criteria.  Resultant changes in forest structure can 
then be used to assess relative responses of other model processes over time via the component 
submodels of fire, stand dynamics, and wildlife habitat.  The most important aspect of the forest 
harvesting component is that it acts at a resolution and precision comparable to that of the 
underlying digital forest inventory data (9 ha).  Cut-levels and operability, scheduling and blocking 
rules (how cells are aggregated into larger harvestable units) can be combined to create a rich 
array of harvesting strategies and local tactics.  Haul costs are an important consideration of any 
logging plan.  By finding optimal log hauling routes from each forest cell to the nearest mill, the 
model can locate and cut the timber based not only on its characteristics, but on whether or not it 
is economical to harvest.  Currently, road access is computed to grid-cell resolution which is 
unecessarily high for the present application.  If the dynamic road-building feature proves useful in 
the mixedwood context, later versions will reduce the precision of the road construction and 
access to something more reasonable (e.g., townships). 
 
Wildfire simulation.  In this version of FEEnix, only lighting caused fires are considered.  The 
model treats fire as a three stage stochastic process.  Stage 1 models the ignition process, and 
determines if a fire actually starts in a particular grid cell in a given model time step.  Stage 2 
models the effect of fire suppression, in effect determining a probability that a fire stays within the 
cell of origin.  Stage 3 models fire growth, using spread parameters or “jump probabilities” which 
determine the probability of a fire spreading across a cell boundary, from a burning cell into an 
unburnt neighbour.  These three processes depend on parameters that can be set by the user, using 
a dialog box. 
 
Mixedwood dynamics.  This component, designed de novo, is crucial for correct representation of 
fire ignition and spread, studying interactions between harvesting and fire, and projecting the 
future distribution and availability of white spruce.  Our objective was to define a biologically 
reasonable model of the dynamics of mesic stands, using as few parameters as possible, and which 
implicitly makes use of allometric relationships such as that between volume and seed production.  
The mixedwood dynamics model consists of 5 submodels:  seed production, seed dispersal, 
substrate, recruitment, and stand dynamics.  We have attempted to keep the model dimensionless.  
Most components (seed production, recruitment, etc.) are described by variables or functions 
which take values between 0 and 1.  We believe that most of the empirical claims and assumptions 
can be supported by the current literature on white spruce ecology and aspen stand dynamics. 
 
Wildlife-habitat models.  The habitat model component, also designed de novo, complements the 
existing individual-based modelling capability of FEEnix.  Unlike the latter model component that 
is restricted to a few species for which detailed demographic data is available, habitat models have 
been developed for many resident and migratory forest birds that occur in the boreal mixedwood 
forest.  The habitat models were developed using the same approach that is described in the 
section on “Statistical Habitat Modelling” (see also Schmiegelow et al. final report for additional 
details).  The main difference is that the habitat models built for FEEnix are based on a grid 
representation of forest inventory data, whereas the models described below are based on the 
original vector representation.  The resultant grid-based habitat models predict the abundance of 
forest bird species at each pixel in the landscape.  The output maps can then be optionally 
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aggregated to display suitability classes based on, for example, low, medium and high abundance 
values.  As with other model components described above, parameter coefficients can be changed 
by the user through a dialog box.  This feature facilitates the application of FEEnix in other 
geographical regions where parameter estimates may vary. 
 

 
Figure 2.  Screen capture of a FEEnix simulation run showing several maps and graphs tracking various 

economic and ecological indicators. 

 
Other applications 
 

D. Demarchi has worked with several University of Alberta researchers (B. Olsen, J. Hoyt, 
S. Hannon) to explore application of the individual-based modelling capabilities of FEEnix to two 
boreal landbird species:  the barred owl, and the three-toed woodpecker.  The latter case involves 
some interesting potential interactions between wildfire and dispersal.  More recently, Rohner, 
Demarchi, Walters and Schmiegelow have used FEEnix to model woodland caribou populations 
in cooperation with the West-Central Alberta Caribou Committee. 
 
Future development 
 

The resolution of a planned future version of the model will be reduced to 3 ha to 
approximate the scale at which bird point count surveys and habitat models were developed.  The 
extent will remain the same.  Changing the resolution of FEEnix will entail the re-parameterisation 
of several submodels.  In addition, we are planning more efficient input/output linkages between 



 

 6

FEEnix and some of the major GIS packages (i.e., ArcView, GRASS) used by forest managers 
and researchers. 
 

OBJECTIVE 2:  CROSS-SCALE MODELLING:   
PREDICTING LANDSCAPE PATTERN INDICES  
FROM FOREST STAND ATTRIBUTE TABLES 

 
For some modelling purposes, high-resolution spatially explicit models (e.g., FEEnix) may 

neither be necessary nor efficient for prediction.  For example, members of the BEEST have 
developed a low-resolution spatial dynamic model that incorporates simulations of forest 
harvesting decisions (Cumming and Armstrong 1999), and statistical models of wildfire (e.g. 
Cumming in press) and stand dynamics.  Model cells represent roughly 100 km2 regions (e.g., 
townships) and cover an area of several million ha simulated over 200 years.  Each cell contains 
aggregated information on hundreds of individual patches whose attributes include size, 
vegetation structure, age, and disturbance history.  There is no representation of patch geometry 
or configuration within cells.  Nonetheless, the aggregated data retain enough structure that 
spatially implicit modelling of ecological processes operating at spatial scales finer than the model 
resolution is possible, in some cases.  A need for appropriately scaled sub-models of wildlife 
distribution and abundance that could be linked to this particular coarse-scale modelling initiative 
motivated this component of our project. 
 

Our approach to the problem was to determine if was possible to model spatially explicit 
landscape pattern indices from nonspatial stand attribute tables.  We sought indices that have been 
shown, in the literature and with our own habitat modelling initiatives, to be important correlates 
of bird abundance and community structure. Our goal was to develop low resolution models using 
readily available forest inventory data that consisted of georeferenced stand polygon boundaries 
and associated stand attribute tables.  We refer to summary statistics that can be readily calculated 
from attribute tables (without requiring information on patch geometry) as stand table indices 
(STIs).  Conversely, we refer to landscape statistics that can only be calculated efficiently using 
information on patch geometry (e.g., patch shape and interpatch distance) as landscape pattern 
indices (LPIs.)  Our specific objectives were (1) to identify representative and interpretable 
subsets of LPIs and STIs from the large set of readily computable candidate landscape metrics and 
(2) to explore the nature and strength of the statistical relationships between these two types of 
metrics (Figure 3).  We used townships (≈9500 ha) as our sample landscapes. 
 
Methods and results 
 

The complete methodology, from data assembly to statistical modelling, is illustrated in 
Figure 4.  The main steps are briefly described below and more details can be found in Vernier 
and Cumming (1998).  We first selected 84 township-size digital Alberta Vegetation Inventory 
(AVI) maps that were available for portions of our project’s broader study area (Figure 1).  Only 
maps having little or no missing data and where the landscape matrix was mostly forested were 
used.  Using AVI stand-attribute data, we developed a habitat classification system based on the 
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dominant canopy tree species (or genus in the case of Populus), estimated stand age, and 
management history.  We used ArcView (Esri 1998) to grid each map to a resolution of 1 ha 
using the derived habitat class attribute, and then used FRAGSTATS (McGarigal and Marks 
1993) to compute a suite of LPIs from these classified raster maps for 4 of the 9 habitat classes: 
young deciduous, old deciduous, white spruce, and mixedwood forests.  These 4 classes comprise 
the most commercially valuable portion of the mixedwood forest, and have attracted the most 
research effort directed at quantifying avian habitat associations.  They are thus of particular 
interest for cross-scale habitat modelling. 
 

1638
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1952

1696

1676

1751

1714

1681

1675

1750

1728

1953

1617

1756

1669

1665

1702
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1736

1759

1668

1778 1781
 

Stand_id Stand_area Stand_ht Stand_age Hab_class 
1669 17525 28 125 4 
1675 549481 11 95 6 
1676 37928 27 115 8 
1681 35123 23 105 5 
1688 83579 30 135 5 
… … … … … 

Figure 3.  Example of forest inventory data with a stand boundary map (top) and an associated stand 
attribute table (bottom).  The former was gridded and used to compute landscape pattern indices (LPIs) 
while the latter was used to calculate stand table indices (STIs). 

 
For each of the four focal classes in each of the 84 maps, we computed 29 class-level LPIs 

(all the class-level metrics that FRAGSTATS supports), including a variety of edge, patch-shape 
and core-area metrics, nearest-neighbor metrics, and contagion and interspersion metrics.  These 
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metrics constituted our initial candidate set of LPI variables (dependent variables).  For our 
candidate independent variables, we computed 8 STIs for each of the habitat classes, directly from 
AVI stand attribute tables exported from ArcView.  Because many of both the STI and LPI 
variables are strongly correlated, we performed a variable reduction procedure following the 
approach described by Ritters et al. (1995).  This included a pairwise correlation analysis followed 
by a principal components analysis.  For the statistical modelling phase we retained variables with 
high component loadings (> 0.80) and which were not highly correlated with each other (r > 0.9). 
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Define habitat classification

Choose digital maps

Export stand attributes
Grid maps using new

habitat field

PERL SCRIPT FRAGSTATS

Compute stand table
indices

Compute landscape
pattern indices

Log transform
where necessary

Log transform
where necessary

Select final stand table
indices

Select final landscape
pattern indices

Principal components
analysis

Canonical correlation
analysis

Estimate canonical functions (canonical
correlation, redundancy index)

Interpret canonical functions (canonical
weights, loadings, cross-loadings)

a1Y1 + a1Y2 + a1Y3 = b1X1 +b2 X2 + b3X3 + b4X4 + b5X5

 
Figure 4.  Procedure used to develop the statistical relationships between STI and LPI variables (see text). 

 
To model the relationship between the STIs and LPIs, we performed a Canonical 

Correlation Analysis (CANCOR) – a generalization of multiple regression, where multiple 
dependent variables are simultaneously related to multiple independent variables.  For each habitat 
class, we performed the following steps: 
 

1) The three STIs surviving the variable reduction step were selected as the set of 
independent variables.   
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2) From each principal component retained during the PCA step, we chose the component 
variables with high loadings as the set of dependent variables for the class. 

3) We then performed a CANCOR on these sets of variables, unless only one LPI loaded 
highly on a given principal component, in which case we performed a multiple regression 
analysis.   

4) We assessed the resultant multivariate models by considering the magnitude of the 
canonical correlation coefficients, its significance level, and the redundancy indices for 
each variate. 

 
Our results indicate that using only three landscape variables obtained directly from stand 

attribute tables (STIs measuring total habitat area, and the mean and standard deviation of habitat 
patch size), our statistical models explained more than 73% of the joint variation in five landscape 
pattern indices (LPIs representing patch shape, forest interior habitat, and patch isolation).  
Moreover, predictor variables and strengths of association were highly consistent across habitat 
classes (Vernier and Cumming 1998). 
 
Application of CANCOR models 
 

To illustrate the intended application of this research, we used a multiple regression model 
based on the CANCOR analysis to simulate the spatial dynamics of one LPI in a large managed 
landscape subject to disturbance by wildfire.  Specifically, we modeled log(MPI) – mean 
proximity index, a measure of the degree of isolation and fragmentation of a patch type – for old 
deciduous (class O_DECID) for 825 townships on a roughly 74,000 km sq forest estate in the 
boreal mixedwood (shown in Figure 1), using a prototype of the low-resolution landscape 
simulator mentioned in the introduction.  We ran the model for 100 years of simulated harvesting 
and wildfire.  The model was initialized from stand-attribute tables (described above); the harvest 
scheduler and table-driven stand dynamics component are described by Cumming and Armstrong 
(1998); the wildfire component is based on township resolution models of fire composition 
(Cumming, in press), fire size (Cumming 1999) and ignition (Cumming, unpublished data).  The 
annual rate of harvest in the commercially valuable forest (essentially the four focal habitat 
classes) was approximately 1%.  The mean annual rate of burn was approximately 0.3%, 
consistent with the recent historical record (1940-1995) reconstructed by Cumming (1997).  After 
100 years of simulated harvesting and fire, the distribution and township-scale pattern of old 
deciduous stands has changed markedly (Figure 5).  The two patterns are uncorrelated according 
to Pearson (r=0.10,p=0.074) and Spearman (r=-0.099,p=0.084) coefficients. 
 
Discussion 
 

Our STIs are easily calculated from stand attribute tables contained in forest inventories 
that cover the boreal mixedwood.  Similar data are available throughout the boreal forest of 
Canada (Gillis and Leckie 1993).  The spatial scale of our analysis (the size of our sample 
landscapes) is consistent with the spatial resolution of these inventories.  Only the habitat 
classification system would need to be modified to repeat our analyses in different parts of the 
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boreal forest.  The strong canonical correlations obtained in this analysis have important 
implications for habitat modelling in the boreal mixedwood forest.  These relations show that 
stand attribute tables may be used to characterize not only patch sizes and proportional amounts 
of habitat types, but also several aspects of their spatial structure and distribution within a 
landscape (i.e., patch shape, core area, and patch isolation).  Thus, it is possible to incorporate 
both the amount and configuration of different habitat types within large-scale simulation models, 
without explicitly representing the underlying landscape.  This will greatly simplify some of the 
technical aspects of model development and data acquisition, and greatly speed model execution 
time.  Also, spatial factors can be incorporated into models developed for areas where digital 
maps are unavailable. 

 

Figure 5.  Predicted values of logMPI for class O_DECID, at present, and after 100 years of simulated 
harvesting and fire.  The mapped areas contain over 800 townships; the region is shown in outline in Figure 
1. Over 100 years, a substantial rearrangement of this component of the forest is apparent. 

 
Three of our habitat types are harvested (excluding young deciduous forests).  Industrial 

forestry is likely to reduce their amounts below any of the theoretical thresholds predicted to be 
important for area sensitive species.  The configuration of the remainder will therefore become an 
important management issue.  Current forest practices will fragment the non-harvested residual 
areas of these types almost as much as is possible.  They will be left as long linear features 
associated with stream buffers, or as small inoperable patches, surrounded, e.g. by wetlands.  This 
outcome could in principle be altered, so that for example, residual areas of these types were 
concentrated in a few large patches within each township (e.g., Bunnell et al. 1999) .  This change 
in practice would not necessarily alter the total residual area.  Thus, evaluation of alternate 
management practices may well require the ability to model changes in habitat configuration as 
such, independent of abundance. We have indicated, using a prototype low-resolution landscape 
model, how this can be done over large areas, by exploiting the statistical relations we developed 
between stand table and landscape pattern indices. 
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OBJECTIVE 3:  STATISTICAL HABITAT MODELLING 
 

Effective wildlife conservation in managed forest landscapes increasingly relies on wildlife 
habitat relationships models to predict the outcome of alternative management scenarios on the 
distribution and abundance of focal species.  Habitat models based on remotely sensed data such 
as forest inventories or satellite imagery are inexpensive to develop compared to models based on 
detailed vegetation data collected in the field, and may be as effective in predicting abundance at 
the spatial scales considered here (Schmiegelow, Vernier and Cumming, unpublished analysis).  
As our goal is prediction at scales commensurate with forest management planning, candidate 
independent variables should be derivable from available spatial data.  We have developed such a 
set of statistical (empirical) habitat models using bird survey and forest inventory data from the 
mixedwood region of the boreal forest in Alberta.  Using a generalized linear modelling approach, 
we developed poisson regression models which predict the abundance of forest bird species given 
information about local habitat characteristics and surrounding (neighbouring) forest patterns.  
We have started to use the habitat models presented here within FEEnix to evaluate the 
consequences of alternative management activities and policies over spatial extents of several 
thousand square km and time horizons of at least 100 years (e.g., Schmiegelow et al. unpublished 
analysis).  In this section we describe the model development process.  A summary of the habitat 
models are provided in Schmiegelow et al.  A more detailed description of the methodology, 
results, and discussions can be found in Vernier et al. (2001). 
 
Bird survey data 
 
 We used bird abundance data collected by point-count surveys conducted between 1993-
98 as part of the Calling Lake Fragmentation Experiment and related studies (e.g., Schmiegelow 
et al. 1997).  A total of 406 permanent sampling stations were located within 65 sites, which we 
define as contiguous areas of similar forest type and age (Figure 6).  Site types included areas 
clearcut in 1993 as part of the experimental design, young and old deciduous forests, mature 
coniferous forests, and mixedwood forests.  There was a least 200 m between each sampling 
station.  In every year that a station was sampled, point counts were conducted five times during 
the breeding season, at 10-day intervals, from the third week in May through early July.  Sampling 
effort, in years,  ranged from from one to six years across stations, as resources allowed additional 
survey points to be added to the main experimental design described by Schmiegelow et al. 
(1997).  We developed models for over 20 bird species representing a range of observed 
abundances and expected responses to forest fragmentation (Schmiegelow and Hannon 1999).  
For each bird species, we calculated the mean abundance per station per year (after Schmiegelow 
et al. 1997), and multiplied (weighted) this by the number of years a station was sampled 
(between 1 and 6 years).  We used this aggregated count value as our response variable in 
subsequent statistical modelling (see Schmiegelow et al. 1997 and Vernier et al. 2001 for details). 
 
AVI-based habitat data 
 



 

 13

We used AVI data to measure habitat characteristics at two spatial scales which we refer 
to as the “local” and “neighborhood” scales.  At the local scale, commensurate with the territory 
sizes of species considered here (Schmiegelow, unpublished data), and with the resolution at 
which bird observations were recorded, we measured forest characteristics such as stand height 
and crown closure in a 100-m radius buffer.  At the neighbourhood scale we placed a 400-m wide 
buffer surrounding the local habitat patch, where we measured the abundance and configuration 
of different forest cover types and anthropogenic features.  The neighbourhood size was selected, 
in part, to be consistent with the scale at which other ecological phenomena, such as fire ignition 
and spread, are represented in FEEnix.  We consider both of our scales to be consistent with a 
broad interpretation of Johnson's (1980) second-order habitat selection, in which habitat 
composition and configuration are characterised at multiple scales, at the level of territories. 
 

 
Figure 6.  Distribution of forest habitat (light grey), clearcuts (white), lakes 
(dark grey), nonforest habitats (medium grey), and bird sampling stations in 
the Calling Lake Study Area. 

 
 The forest cover layer of the AVI data contains several attributes useful for modelling 
wildlife habitat relationships such as species composition, crown closure, height, estimated stand 
age, and the location of non-forest cover types such as permanent clearings, lakes, and wetlands.  
Two additional map layers described the location of streams, logging roads, and seismic cutlines.  
We developed a habitat classification system based on the overstory and understory tree species 
(or genus in the case of Populus), stand age, and management history (Table 1).  The 
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classification system was used to create a generalized map of forest and non-forest habitat classes 
within the study area.  The point count stations were georeferenced and linked to the AVI spatial 
database. 
 



 

 15

Table 1.  Habitat classification system used to calculate several local and neighborhood-level habitat 
variables. 

Class  Description 
WATER Water (lake, ice, river) 
NONFOR Non-forest and wetland 
Y_DECID > 70% deciduous and <= 90 years 
O_DECID > 70% deciduous and > 90 years 
W_SPRUCE > 70% white spruce 
B_SPRUCE Leading black spruce 
PINE Leading pine 
MIXED Mixed deciduous/white spruce 
CCUT Clearcuts < 15 years. 
ANTHRO Anthropogenic (wellsites, large cutlines, etc.) 

 
 We used the original and derived map layers to measure habitat characteristics around 
each bird sampling station at two spatial scales: the local-scale, which matched the size and shape 
of the circular bird sampling stations (inner buffer of 100 m radius, or 3.14 ha), and the 
neighborhood scale, which extended from 100-500 m beyond the sampling stations (outer buffer, 
75.4 ha).  The habitat characteristics we chose have either previously been used in the literature or 
were hypothesized correlates of species abundance based on the ecology of the species. 
 
 Seven variables characterized the structure and composition of the inner buffers (Table 2).  
A categorical variable (having discrete, unordered values) specified the habitat class at the origin 
of the station.  Four continuous variables quantified the size of the habitat patch containing the 
origin, and the area weighted means of canopy height, crown closure and proportion of deciduous 
species in the canopy, for forested habitats intersecting the buffer.  Two index variables coded the 
presence/absence of streams and anthropogenic edges within the buffer. 
 
 For each bird species, we selected explanatory variables from the candidate set by a 
backwards stepwise procedure (P-to-enter < 0.001, P-to-remove <0.0015).  A conservative level 
of significance was chosen as a correction for mulitple tests.  Significance levels were based on 
standard likelihood ratio tests.  Model strength was measured using the percent of deviance 
explained, a measure analogous to the multiple coefficient of determination (R2). 
 
 To evaluate the relative influence of local and neighborhood habitat variables on each 
species, we compared five alternative habitat models.  At the ends of the spectrum were the null 
and full model.  The null model was simply the mean count over all stations while the full model 
included all local and neighborhood variables.  The three intermediate models used subsets of the 
variables selected by the backwards stepwise procedure: local variables only, neighborhood 
variables only, or both sets of variables.  We used Aikaike’s Information Criteria (AIC; Akaike 
1974) to select the best of the five models.  AIC measures the tradeoff between model goodness-
of-fit (measured as the log-likelihood) and model parsimony measured by the number of 
parameters included in the model.  Table 3 shows an example of our model selection approach. 
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Table 2.  AVI-based habitat variables.  Local habitat variables were measured within a 100 m radius while 
neighborhood variables were measured in a 400 m radius beyond each local (inner) buffer. 

Variable Variable type Range of values 
 

Description 

Local    
L_CCUT, 
L_MIXED, 
L_ODEC, 
L_PINE, L_SB, 
L_SW, L_YDEC 

Dummy coded 7 classes Habitat types in which stations were located (see 
Table 2 for descriptions). 

L_SIZE  Numeric 0.5 – 703.4 ha Patch size; relies on a habitat classification 
system (Table 2). 

L_DIST Numeric 0 – 1238.9 m Distance of station centre to nearest 
anthropogenic edge (habitat classes 9 and 10). 

L_CROWN  Numeric 0 – 85.5 % Mean crown closure among forested polygons. 
L_DEC  Numeric 0 – 1.0 Mean deciduous proportion of forested polygons.  
L_HT  Numeric 0 – 31.0 m Mean stand height of forested polygons. 
L_STREAM Binary 0 or 1 Presence of streams or lakes. 
Neighborhood    
N_CUT  Numeric 0 – 0.66 Proportion of neighborhood in a clearcut. 
N_MID Numeric 0 – 0.99 Proportion of neighborhood in mid seral forest 

(15-90 years).  
N_LATE Numeric 0 – 1.00 Proportion of neighborhood in late seral forest 

(>90 years) 
N_DEC Numeric 0 – 1.00 Proportion of neighborhood in deciduous forest. 
N_MIXED  Numeric 0 – 0.77 Proportion of neighborhood in mixedwood forest. 
N_SB Binary 0 or 1 Presence of black spruce forest. 
N_SW Binary 0 or 1 Presence of white spruce forest. 
N_ANTHRO  Binary 0 or 1 Presence of anthropogenic features (well sites, 

clearings, gravel pits, highways, etc.). 
N_WATER  Binary 0 or1 Presence of lakes, ponds, etc. 
N_SIMP Numeric 0 – 0.83 Habitat patch diversity measured usingSimpson's 

index. 
N_EDGEA Numeric 0 – 319.2 m/ha Anthropogenic edge density calculated using 

habitat classification system (Table 2) and edge 
contrast matrix (Table 4). 

N_EDGEN Numeric 0 – 85.3 m/ha Natural edge density calculated using habitat 
classification system (Table 2) and edge contrast 
matrix (Table 4). 

 
 Prior to model development, we assessed the distributional assumptions of our candidate 
predictor variables, checked for highly correlated pairs of predictor variables, and looked for 
nonlinear relationships between bird abundances and our continous variables using scatterplots 
with lowess smoothers.  After model development we assessed model assumptions by examining 
diagnostic plots and maps of the response variables and the model residuals to identify skewness 
and outliers, assessed the overall behaviour of the model, identified potentially influential 
observations, and examined the assumption that counts were independent between stations (i.e. 
no spatial autocorrelation).  Finally, we assessed model uncertainty using a leave-one-out cross-
validation approach. A detailed discussion of our model assessment strategy and our approach to 
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overcome certain problems such as spatial autocorrelation in the count data is provided in Vernier 
et al. (2001). 
 

Table 3.  Summary of alternative habitat models for the Black-throated Green Warbler (Dendroica virens).  
Deviance, percent deviance explained, and AIC are explained in the text.  The model with the lowest AIC is 
italicized. 

Model Habitat variables Df Deviance %Dev 
Explained 
 

AIC 

Null   
405 

 
582.7 

  

Local L_MIXED, L_ODEC, L_HT  402 333.5 42.8 812.6 
Neighborhood N_LATE, N_DEC, N_SIMP 402 364.7 37.4 843.8 
Local + 
neighborhood 

L_HT, N_CUT, N_LATE, N_DEC, N_SW, 
N_SIMP 
 

399 266.4 54.3 751.5 

Full All local + neighborhood variables 380 252.5 56.7 775.6 

 
 
Applications and model validation 
 

In Alberta, forest management planning is largely based on forest inventory information, 
but the ability of such information to predict species abundances has not previously been 
evaluated.  We attempted such an evaluation, using Poisson regression analysis to model the 
relationship between bird species abundances observed in the field and habitat characteristics 
derived from forest inventory data.  Poisson regression deals explicitly with characteristics of 
count data, and is generally more efficient and consistent, and less biased than linear regression 
models of the same data.  Our final models demonstrated good predictive ability with no evidence 
of bias.  We conclude that the approach to modelling abundance presented here is robust and their 
use in landscape simulations is justified, pending their validation against independent data sets.  
An important objective for developing AVI-based habitat models is to assess the potential 
ecological outcomes of various forest management scenarios in the boreal mixedwood forests at a 
resolution and extent commensurate with management planning.  Our fourth objective was to 
begin evaluating scenarios. 
 

OBJECTIVE 4:  SCENARIO EVALUATION 
 

We completed integration of our statistical habitat models (objectives 2 and 3) into 
FEEnix (objective 1).  This integrated approach allows us to explore  the effects of alternative 
management scenarios on forest bird communities over large spatial and temporal scales.  Some 
preliminary simulations have been run (Schmiegelow et al. unpublished analysis) and more are 
planned for the near future.  Specifically we are planning to evaluate the interactions between 
harvesting strategies (e.g., a two-pass system, a dispersed system, no harvesting), wildfire, fire 
suppression, stand dynamics, and forest bird abundance and community structure. 
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GRADUATE STUDENTS 

 
Three Master’s students were partially funded by the SFM Network and have all 

successfully completed their studies. 
 

Donald Demarchi (supervised by C. Walters) defended his thesis: “A Spatial Simulation 
Model for Evaluating the Response of Rare and Endangered Species to Conservation Strategies 
and Forest Policies: A Case Study on the Northern Spotted Owl” in April 1998.  Don adapted a 
modelling framework originally developed by C. Walters to compare a variety of policy options 
for future forest management aimed at protecting and conserving the spotted owl.  This same 
modelling framework formed the basis for the development of FEEnix. 
 

Nyree Sharp (supervised by F. Bunnell) defended her thesis: “Bird-Habitat Associations 
and Simulated Effects of Logging on Bird Habitat in the Aspen Boreal Mixedwood” in September 
1998.  Using data provided by the Alberta Environmental Centre (now the Alberta Research 
Council), Nyree developed a methodology for projecting vertebrate responses to forest practices 
in the boreal mixedwood.  Specifically, she (1) developed relationships between bird abundance 
and forest habitat attributes and (2) assessed the probable effects of logging on bird abundance. 
 

Kim Lisgo (supervised by F. Bunnell) defended her thesis: “Ecology of the Short-tailed 
Weasel (Mustela erminea) in the Mixedwood Boreal Forest of Alberta” in May 1999.  Kim’s 
research was conducted within the forest management area of Alberta Pacific Forest Industries, 
Inc. (ALPAC).  The objectives of her project were to: 1) describe the diet of the short-tailed 
weasel and differences in the diets of males and females; 2) describe the use of habitats by male 
and female weasels; 3) describe the structures used by weasels for resting; 4) examine the use of 
slash by female weasels in 3-year old cutblocks, containing naturally regenerating aspen (Populus 
tremuloides); and 5) propose recommendations for managing habitat of weasels in mixedwood 
boreal forests. 
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